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Different interface design of polymer composites
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Structure of classic and plasma polymers
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Classic radical chain-growth polymerization to linear polymer molecules

Random recombination of fragments in the plasma state to crosslinked networks
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random addition of fragments
permanent irradiation of deposites polymer
permanent ion bombardment
rearrangements, hydogen splitting-off
low-growing rate because of low pressure

polymer strength: 
dispersive and polar forces between segments
coiling, Interlocking, interpenetrating, crosslinking of chains
chain length (10-3 – 10-2 mm)



Functionalizations of polyolefin surfaces
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plasma polymers have one dominating functional
group which have survived the deposition process

blue - polysort functionalization
red - monosort functionalization

gas
plasma

plasma
+ 

chemical
post-
treatment

plasma
polymerization

electrospray
(ESI)

divers

monosort

monosort

monosort



Survival of NH2-functional groups in the allylamine
plasma polymer (used for adhesion-promotion to Cu)

CH2 CH

CH2

NH2
n

ca. 40% remained NH2-groups
ca. 15-18% O/C during exposure to air

0

5

10

15

20

25

30

35

40

45

50

55

allylamine
plasma polymer
exposed to air 
(>168 h)

allylamine
plasma polymer
(30 min exposue
to air)

allylamine
polymer

 

 

 NH
2

 N
 O and N-O

N
H

2,
 N

 a
n

d
 O

 c
o

n
ce

n
tr

a
tio

n
 [

%
/C

]

5

degenerated N-bonds
>N-, -NH-, >C=N-, >C=C-N<, -C ≡N,
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Survived original group
NH2
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OH- and COOH-functional groups in the allyl alcohol and
acrylic acid plasma polymer (adhesion-promotion to Al)
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Measurement of adhesion
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tensile direction
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directly covalently
bonded

covalently bonded
by spacer molecules

covalently bonded
by plasma polymers

Types of covalent linking of Al to polymer
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Peel strength of Al films to gas-plasma modified PTFE
and PP surfaces
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polymer

plasma-modified
polymer surface

Al

polymer

plasma-modified
polymer surface

Al

-CH2-CH2- + n O  CO2 + H2O etching
-CH2-CH2- + n O  -CH2-CH(OH)- hydrogen shift
-CH2-CH2- + n O  -CH2-COOH   end group, termination

-CF2-CF2- + n H  amorphous carbon + 4 HF
-CF2-CF2- + n H  -CH2-CH2- + 4 HF
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single covalent bonds covalently bonded
by spacer molecules

covalently bonded
by plasma polymers

Types of covalent linking of Al to polymer
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peel strength [N/m]
calculated for the contribution of each 1 spacer

Adhesion of Al to polypropylene promoted by spacers
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1. the longer and more flexible the spacer the higher the peel strength

2. COOH end groups generate highest adhesion, OH groups act moderately

aluminium



Interface design of polypropylene with special spacer
molecules for non-peelable Al films
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1.   MOST EFFICIENT INTERFACE DESIGN between polyolefins and aluminium.

2.   It results in long-term (1 YEAR) durable NON-PEELABLE metal-polymer composites !!! 
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single covalent bonds covalently bonded
by spacer molecules

covalently bonded
by plasma polymers

Types of covalent linking of Al to polymer



physical forces energy (kJ/mol)  energy (eV) striking distance (nm)
van der Waals forces weak bonds
dipole-dipole (Keesom) 20                         0.2                 0.3 - 0.5
dipole-induced dipole (Debye)                 2                           0.02               0.3 - 0.5
dispersion forces (Heitler-London)           0.08-40                 0.008-0.4       0.3 - 0.5
hydrogen bonds 50                          0.5                 0.3 - 0.5

chemical bonds strong bonds
ionic 560-1000                5.6-10.0        0.1 - 0.2
covalent (carbon)                                   300-750                  3.0-7.5          0.1 - 0.2
metal 110-260                  1.1-2.6          0.1 - 0.2

Many weak physical vs. a few strong chemical forces?

1.) The density of physically interacting polysort groups is approximately equal to that of
chemical bonds for plasma polymers with monosort functional groups.
2.) Chemical bonds (monosort) are stronger by a factor of 200  higher adhesion.
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C=O  C-O-C  C-OH  CHO COOH

polyolefin

coating

polyolefin

coating

van der Waals forces
plasma-oxidized
surface layer

plasma polymer

plasma-activated
surface layer

van der Waals and
chemical forces

chemical forces

mechanical 
 failure

interactive groups: polysort

mechanical failure: interface

interactive groups: monosort

mechanical failure: cohesive
                       ( plasma polymer )

mechanical 
 failure



Peel strength  of thin Al layers from polypropylene vs. 
type and concentration of functional groups of plasma

polymers

: -COOH>OH>>>NH2
carboxyl and hydroxyl groups
most efficient

bidentate bonds (Al-O)2C
(acrylic acid plasma polymer)

Monosort (OH, COOH, NH2) plasma polymer Variable concentration of OH by
plasma copolymerization with ethylene
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  cOH
peel strength increases with
concentration of OH groups linearly

monodentate bonds Al-O-C
(allyl alcohol plasma polymer)



Peel strength of Al from plasma polymer coated PTFE
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Peel strength of
Al from plasma
polymer coated

PTFE vs.
time dependence

0 2 4 6 8 10 12 14 200 400 600 800 1000

0

20

40

60

80

100

120

140

160

hydrogen plasma

 

 

O

F

el
e

m
e

n
ta

l r
a

tio
 [%

F
/C

 o
r 

%
O

/C
]

exposure time [s]

CF2 CF2 + 4 H ( plasma )

CH2 CH2 +    4 HF

2  C +    4 HF
fragemted and 
amorphous carbon

CF C

OH

O

air

defluorinated, hydrogenated 
but preserved polymer chain

strong acidic groups
PTFE

CF C

OH

O

CH2 CH

COOH

CF C

O

O

CH2 CH

C O

PTFE
substrate
plasma pretreated

plasma deposited
poly ( acrylic acid )

CH2 CH

COOH

CH2 CH

C
OO

AlAl Al layer
coating

chemical bond

chemical bond
bidentate

chemical
reaction

AlAl

hydrogenation, defluorination on exposure to hydrogen plasma

coating by plasma polymerization of acrylic acid
(covalently bonded to all composite partners)

0 2 4 6 8 10 12 14 200 400 600 800 1000
0

50

100

150

200

250

300

350

400

 peeling along interface of Al/PTFE
 mixed peeling between Al/PTFE and Al/tape
 peeling between Al/tape

PTFE, 10 s H
2
 plasma +

plasma deposition of
poly(allyl alcohol)
-[CH

2
-CH(CH

2
OH)]

n
-

exposure time [s]

PTFE/H
2

PTFE, 10 s H
2
 plasma +

plasma deposition of
poly(acrylic acid)
-[CH

2
-CH(COOH)]

n
-

 

p
ee

l s
tr

e
ng

th
 [N

/m
]



Mechanism of adhesion using plasma polymers
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Covalent bonding between plasma polymer
and polymer coating and/or substrate

chemical bonding between
polymer substrate and 
thin plasma polymer layer

chemical bonding between 
plasma polymer layer and
polymer coating

polymer polymer

coating

chemical bonding between
polymer substrate and 
thin plasma polymer layer

chemical bonding between 
plasma polymer layer and
polymer coating
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1) Grafting via radicals
(reactions with double bonds, substitutions…)

2) Grafting via radical reactions with
oxygen from air
(peroxyhydroperoxydecay to alkoxy radicals)

3) Grafting by chemical reactions of
functional groups of plasma polymer 
and those of coating
(Schiff´s base, esterification, addition to urethanes, substititution…)



Problems with adhesion promotion using
plasma polymers

20



plasma polymerization
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Plasma
polymerization

plasma polymer with
included oligomers
and trapped radicals

trapped radicals react
with oxygen from air

reaction emits much
enthalpy, thus self-
igniting of smoking
after milling the
plasma polymer

Stormy and smoky oxidation of trapped radicals
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1) Post-plasma oxidation of plasma polymers on exposure to air (auto-oxidation,
„ageing“)
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aramid fibre -4.1
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Au 14.2

Cu 16.5

polyamide 6 120

polymetylmethyacrylate 85
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oxygen from air
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# internal stress in the plasma polxmer layer by  peroxy-induced crosslinking within the surface layer if exposed to oxygen  
   from air
# in the inner of layer only a few C-C recombination occur
# comparable with the deflection of bimetals

peelingpeeling
adhesion

plasma

Internal stress in plasma polymer layer caused by
by surface oxidation and crosslinking leading to self-peeling
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2) Internal stress in the plasma polymer polar interactions

3) Stress caused by different thermal expansion coefficients



Quenching of any post-plasma oxidation
of plasma polymers on exposure to air
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Suppressing and quenching of post-plasma oxidation
(auto-oxidation) using

immediate (in situ) gassing with Br2, B2H6 and NO 
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Post-plasma oxidation
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Conclusions
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Advantages of plasma polymer
1.  50-90% dominance of 1 sort functional group (monosort)
2. form covalent bond to coating or substrate
3. concentration of monosort groups is high
4. concentration can be variied by copolymerization
5.  thickness can be selected freely
6. layers are reactive (trapped radicals)
7. moderate to high improvement of adhesion
8. elimination of ageing by NO or Br2 gassing
9. pinhole-free layers
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Drawbacks of plasma polymer
1. freshly produced plasma polymers react strongly with

oxygen from air (peroxy group formation and auto-oxidation)
2. plasma polymers undergo ageing
3. one sort of groups dominates but considerable

amounts of side products are produced (not selective) 
4. plasma polymers are crosslinked and hard
5.  plasma polymers contain low-molecular weight

components
6.  plasma polymers cannot completely balance different thermal

expansion coefficients of substrate and coating (self-peeling)
7.  maximum thickness is limited to about 1 µm


