Holger Kersten, L. Hansen, L. Marxen, K. Neumann, T. Trottenberg, B. Renard*

PlasmaTechnology / IEAP / University of Kiel, Germany, *FotoRenard, Strande, Germany

XXIX. Workshop OTPIP Mühlleithen 03/13/2024

Kiel → Mühlleithen

contents

- introduction
- conservation of daguerreotypes
- plasma cleaning
- plasma cleaning of daguerreotypes
- summary

daguerreotypes

- daguerreotypes represent the first practical form of photographs (~ 1840 ... 1860)
- the image is formed by light scattering at distributed (small) silver amalgam particles (microcrystals) of varying size and density on a silver (or silver-coated copper) sheet

Daguerreotype (~1844) of *Louis Daguerre* (1787-1851)

L. Daguerre was one of the pioneers of photography and inventer of daguerreotypes

Daguerreotype (~1845) of **Samuel Morse** (1791-1872) S. Morse was the inventor of telegraphy and introduced also daguerreotypes in the USA

corrosion of daguerreotypes

corrosion of daguerreotypes

- through decades, 19th century daguerreotypes have generally suffered several corrosion phenomena, which remarkably reduced their historic and artistic value
- daguerreotype surfaces are typically covered by an irregular tarnish layer of varying composition
- mainly, exposure to atmospheric moisture and touching causes the formation of tarnish films by silver compounds (sulfides, oxides ...)

copper plate

Boselli, M., Chiavari, C., Colombo, V., et.al., ICOPS-2013, San Francisco, 2013. Wei, W., Gerritsen, I., von Waldthausen, C., Topics in Photographic Preservation, **14**(2011), 24-40.

corrosion of daguerreotypes

• in a **corrosion process** (e.g. rusting of iron), metal (e.g. iron) atoms go into solution

$$M \rightarrow M^{n+} + ne_0^-$$

- by this solution (so-called anodic reaction) electrons are released
- somewhere else on the surface, the electrons can recombine with the ions of liquid surroundings (e.g. moisture) such as H+, or attached to radicals to form negative ions such as OH- (so-called cathodic reaction)

$$2H^+ + 2e_0^- \longrightarrow H_2$$
 $O_2 + H_2O + 4e_0^- \longrightarrow 4OH^-$

- the ions can recombine to new compounds (e.g. iron oxide) which form a corrosion layer
- these reactions can occur in various combinations
- quite similar, also sulfides, hydroxides, chlorides etc. are formed (e.g. Ag₂S)

corrosion of daguerreotypes

- quite similar, also sulfides, hydroxides, chlorides etc. are formed (e.g. Ag₂S)
- tarnishing is mainly produced by hydrogen sulfide (H2S) which is present in air in very small amounts
- given access to a clean silver surface, this amount od hydrogen sulfide will cause a visible tarnish layer of **silver sulfide** (Ag₂S) in a few months

$$2Ag + H_2S \rightleftharpoons Ag_2S + 2H^+ + 2e$$

$$\frac{1}{2}O_2 + H_2S + 2Ag \rightarrow Ag_2S + H_2O$$

- initially, the layer of silver sulfide is very thin causing interference colours
- but when it becomes thicker, the tarnish appears brownish or black
- if daguerreotypes are in frames and covered by glass, the hydrogen sulfide firstly get access to the silver surface at the outer edges due to moisture and enrichment

cleaning methods

- photo-conservation requires non-invasive cleaning methods for controlled removal of corrosion products without damaging the fragile image structure
- different approaches have been applied from first cleaning and restoration attempts:
- **chemical solvents** (cyanides, thioureas) caused fading of images and permanent spotting due to silver loss

 Swan, A., Image, 21(1978), 24-31.

 Barger, M.S., Krishnaswamy, S.V., Messier, R., JAIC, 22(1982), 13-24.
- low-pressure non-thermal plasma cleaning (~1980) for removal of tarnish causing a visible improvement in the appearance of cleaned daguerreotype surfaces

 Barger, M.S., Giri, A.P., White, W.B., Edmondson, T.M., Studies in Conservation, 31(1986), 15-28.

 Daniels, V., Studies in Conservation, 26(1981), 45-49.
- electrochemical cleaning with immersion in alkaline solutions

Barger, M.S., Giri, A.P., White, W.B., Edmondson, T.M., Studies in Conservation, **31**(1986), 15-28. Wei, W., Gerritsen, I., von Waldthausen, C., Topics in Photographic Preservation, **14**(2011), 24-40.

- thermal ablation by laser cleaning (~2000) for selective treatment of specific areas

 Turovets, I., Maggen, M., Lewis, A., Studies in Conservation, 43(1998), 89-100.

 Golovlev, V.V., Gresalfi, M.J., Miller, J.C., Anglos, K, et.al., J. Cultural Heritage, 4(2003), 134-139.
- atmospheric-pressure non-thermal plasma cleaning (~2010) to avoid vacuum systems

 Boselli, M., Chiavari, C., Colombo, V., et.al., ICOPS-2013, San Francisco, 2013.

 Grieten, E., Schalm, O., Tack, P., Bauters, S., Storme, P., et.al., J. Cultural Heritage, 28(2017), 56-64.

electrochemical cleaning

- one can "turn arround" the corrosion and put electrons back into the metal (electrolysis)
- by doing this, one can break up the corrosion products (e.g. rust) into the metal (iron) and oxygen – this process is called reduction
- this reduction process can also be used for the electrochemical cleaning of daguerreotypes as well as other silver objects
- the silver tarnish (mainly silver sulfide) is reduced

$$Ag_2S \rightarrow 2Ag^+ + S^{2-}$$

 the silver ions recombine with electrons to form silver again, while the sulfur ions recombine with H+ ions to form (volatile) hydrogen sulfide

$$Ag^+ + e_0^- \longrightarrow Ag$$

$$2H^+ + S^{2-} \longrightarrow H_2S$$

plasma cleaning

- instead in **wet electrolytic solution**, the charge carriers (ions and electrons) as well as reactive radicals (*H*) can be produced by a **dry glow discharge**
- effects of direct ion impact (physical sputtering) and afterglow (chemical reactions)

the daguerreotype can be used as electrode of the discharge or as floating

substrate

Daniels, V., Studies in Conservation, **26**(1981), 45-49.

plasma cleaning

Grieten, E., Schalm, O., Tack, P., Bauters, S., Storme, P., et.al., J. Cultural Heritage, **28**(2017), 56-64.

reduction of thin corrosion layer (Ag_2S) to metallic film (Ag)

Iridescence color corrosion

removal of nanoparticles of (Ag_2S) to metallic film (Ag)

Edge corrosion

afterglow plasma is not able to reduce thick corrosion layer composed of ternary compounds

plasma cleaning

before

plasma treatment do not alter the **surface morphology**, with particular regard to features characterizing the grey levels of the images (e.g. shape or number of particles of amalgam (Ag-Hg))

after

the morphological features need to be preserved in order to maintain the contrast of the image

Boselli, M., Chiavari, C., Colombo, V., et.al., ICOPS-2013, San Francisco, 2013.

removal of hydrocarbon (oil, grease) contaminants by glow discharge plasma

Kersten, H., Behnke, J.F., Eggs, C., Contrib.Plasma Phys. **34**(1994), 563.

Steffen, H., Schwarz, J., Kersten, H., Behnke, J.F., Eggs, C., Thin Solid Films **238**(1996), 158.

basic mechanisms

- chemical surface film reactions (SFR) of the organic layers with oxygen atoms which
 are produced in the collision dominated cathode fall and in the negative glow by
 dissociation of O₂-molecules,
- 2. chemical sputtering (CSP) with high energetic O₂⁺- and O⁺-species colliding with the cathode,
- 3. physical sputtering (PSP) of the cathode material (CH_xO_y-layer, native oxide and metal) with Ar⁺-ions.

basic mechanisms

The following impact processes take place in the cathode fall and in the glow:

$$O_2 + e_f \rightarrow O_2^+ + 2e_{f'},$$
 (1)

$$O_2 + e_f \rightarrow O^+ + O + 2e_{f'},$$
 (2)

$$O_2 + e_f \rightarrow O + O + e_{f'}. \tag{3}$$

decay into more stable negative atom ions and oxygen atoms:

$$O_2 + e_l \rightarrow O_2^- \,, \tag{4}$$

$$O_2^- \to O^- + O, \tag{5}$$

$$O_2^- \rightarrow O + O + e_l$$
. (6)

The prefered building processes of negative ions also contribute to the formation of reactive oxygen atoms:

$$O^- + O_2 \to O + O_2^-,$$
 (7)

$$O^{-} + O_{2} \rightarrow O^{+} + O_{2} + 2e_{l}$$
 (8)

$$j_{\rm O} = \frac{1}{4} n_{\rm O} \sqrt{\frac{8kT}{\pi m_{\rm O}}} \approx 9.1 \cdot 10^2 n_{\rm O} \sqrt{T} \quad [\text{cm}^{-2} \text{ s}^{-1}]$$

experiment: HCGD, AGD

ellipsometry

ellipsometry

energy influx

total energy influx

Kersten, H., Deutsch, H., Behnke, J.F., Vacuum **48**(1997), 123-128.

rf plasma

ATILA

M.Wolter, M.Stahl, H.Kersten, Vacuum **83** (2009) 768–772.

rf plasma

Hinz, A., von Wahl, E., Faupel, F. Strunskus, T., Kersten, H., Eur. Phys. J. D 72(2018), 91.

Röpcke, J., Loffhagen, D., von Wahl, E., Nave, A.S.C., Hamann, S., van Helden, J.H., Lang, N., Kersten, H., Eur. Phys. J. D 72(2018), 87.

rf plasma

rf plasma

test with silver spoon

before

treatment time of 45 min

after

rf plasma

results

results

results

- treatment time: 30 min
- dark layers by silver sulfide could be removed
- in total, the surface of the photoraph became remarkably brighter
- no changes at the back side
- light change of colour by plasma treatment due to chemical reactions with other species at the surface

results, MS

results

before

after

Renard, B., Photo Antiquaria, 119(2014), 8-10. Renard, B., Photographica Cabinett, 61(2014), 62-64.

results

results

after plasma treatment. C. Histogram of the grey scale images of overall image.

Grieten, E., Schalm, O., Tack, P., Bauters, S., Storme, P., et.al., J. Cultural Heritage, 28(2017), 56-64.

- effect of afterglow plasma treatment shows that there is an overall visual improvement
- dark zone become somewhat brighter, while the light grey zones become considerably brighter
- larger distance betwen both peaks result in an enhanced contrast
- the object is shinier or cleaner after treatment

results

Grieten, E., Schalm, O., Tack, P., Bauters, S., Storme, P., et.al., J. Cultural Heritage, 28(2017), 56-64.

rf plasma

ion beam etching

courtesy: T. Brandt

HIBEx

VIBEx

ion beam etching

GRASSI Museum für Völkerkunde Leipzig

Art der Erwerbung

ion beam etching

solid pieces

Plasmareinigung

Plasmareinigung von Kunstgegenständen im Ionenstrahl

Fotos: Leander Marxen und GrassiMuseum Leipzig

summary

summary

- plasma treatment (rf glow discharge) is a reliable method for restoration and conservation of daguerreotypes
- similartities to plasma cleaning (experiences)
- example: restoration / cleaning of surfaces in a hydrogen-containing nonthermal low-pressure plasma (rf discharge) in afterglow (floating) for reduction of silver sulfide (corrosive contaminations)
- in addition to restoration / cleaning, **conservation / protective coating** of daguerreotypes is possible, too
- atmospheric pressure plasmas become increasing importance
- interest ???

kersten@physik.uni-kiel.de