

March 2024

Measurement of the sheath thickness in single and dual capacitively coupled radio frequency discharges

Daniel Zuhayra¹, J. Schleitzer¹, V. Schneider¹ and H. Kersten¹

> ¹ Institute of Experimental and Applied Physics, Christian-Albrechts-Universität Kiel

Contents

- I. Introduction
- II. Theoretical Background
- III. Experiment
- IV. Results
- V. Conclusion

D. Zuhayra

Measurement of the sheath thickness in single and dual capacitively coupled radio frequency discharges

I. Introduction

D. Zuhayra

Measurement of the sheath thickness in single and dual capacitively coupled radio frequency discharges

Introduction

- Widespread industrial applications of capacitively coupled radio frequency (CCRF) discharges
- Surface processes
 - Ion flux determines rate
 - Ion energy determines process
 - Dependent on RF-amplitude
- Decoupling of ion flux and ion energy threw electrical-asymmetry-effect (EAE) in dual frequency discharges

P. Chabert, N.Braithwaite, "Physics of Radio-Frequency-Plasmas", 2011

Measurement of the sheath thickness in single and dual capacitively coupled radio frequency discharges

Introdcution Goals

- Diagnostic to deepen understanding of plasma processes
- Goals:
 - Investigation of the plasma sheath behavior in 1f and 2f (EAE) discharges
 - Which plasma parameters can be determined from that?
 - Electron densities
 - Discharge symmetries
 - Is a photometric diagnostic suitable for that?
- Sheath extension measurements
 - photometric (noninvasive)
- Langmuir probe measurements

II. Theoretical Background

Institute of Experimental and Applied Physics

Theoretical Background Child-Langmuir sheath

- Plasma boundary sheath where plasma is in contact with objects (probes, chamber walls, etc.)
 - Positive space charge region
- In RF-discharges sheath oscillates
 Electrons periodically flood the sheath region

U. Czarnetzki, B. G. Heil, J. Schulze, Z. Donkó, T. Mussenbrock, and R. P. Brinkmann, "The electrical asymmetry effect - a novel and simple method for separate control of ion energy and flux in capacitively coupled rf discharges," Journal of Physics: Conference Series, vol. 162, p. 012010, 2009

P. Chabert and N. Braithwaite, Physics of radio-frequency plasmas. Cambridge: Cambridge University Press, 2011

 Can be described by the Child-Langmuir law:

$$d \sim \left(\frac{1}{j_{i}}\right)^{\frac{1}{2}} \overline{V}^{\frac{3}{4}} \text{ (collisionless)}$$
$$d \sim \frac{\lambda_{i}^{\frac{1}{5}}}{j_{i}^{\frac{2}{5}}} \overline{V}^{\frac{3}{5}} \text{ (collisional)}$$

Measurement of the sheath thickness in single and dual capacitively coupled radio frequency discharges

Institute of Experimental and Applied Physics

Theoretical Background Electrical-asymmetry-effect

• 2f discharge driven by superposition of 2 harmonic signals:

 $V_0 = V_1 \cos(2\pi f t + \theta) + V_2 \cos(4\pi f t)$

- DC-Self Bias in general given by: $\eta = -\frac{V_{0,\max} + \epsilon V_{0,\min}}{1 + \epsilon}$
- Symmetry parameter ϵ :

$$\epsilon = \left| \frac{V_{\rm sp}}{V_{\rm sg}} \right|,$$

U. Czarnetzki, B. G. Heil, J. Schulze, Z. Donkó, T. Mussenbrock, and R. P. Brinkmann, "The electrical asymmetry effect - a novel and simple method for separate control of ion energy and flux in capacitively coupled rf discharges," Journal of Physics: Conference Series, vol. 162, p. 012010, 2009

III. Experiment

D. Zuhayra

Measurement of the sheath thickness in single and dual capacitively coupled radio frequency discharges

MN: Matching network, RF: RF-generator, PH: Phase shifter, Osci: Oscilloscope, F: Filter

D. Zuhayra

Measurement of the sheath thickness in single and dual capacitively coupled radio frequency discharges

Experiment Execution

- Argon plasma
- Sheath extension measurements:
 - Photo of sheath region
 - 1f (13.56 MHz, 27.12 MHz)
 - 2f
 - Pressure variation
- Langmuir-probe measurements:
 - 1f 27.12 MHz
 - 2f
 - Pressure variation

Institute of Experimental and Applied Physics

Experiment Execution

- Evaluation of the pictures intensity profiles
- **Assumption:** plasma-sheath edge is located at 75% of the distance to the intensity maximum

IV. Results

D. Zuhayra

Measurement of the sheath thickness in single and dual capacitively coupled radio frequency discharges

Results Boundary sheath

Sheath thickness

- Decrease with rising pressure
 - Because of rise in collisions
- Smaller for higher frequencies
- Equalize at 10 20 Pa
 - Because collisions
 dominate

2f sheath influenced by both frequencies

Results Bopundary sheath

- Sheath thickness almost independent of *P* and V₀
- Critical parameter is f

 $\lambda_{i}^{\frac{1}{5}}V^{\frac{3}{5}}$

0.61*en*_e

 $k_{\rm B}T_{\rm e}$

 $d \sim$

Results **Electron density**

Higher frequency • 27.12 MHz +leads to higher extension in mm densities 2f 15 > Smaller sheath CL₂₇ CL_{27, L} 2f density is highest ٠ CL_{2f} 10 CL_{2f, L} Sheath Child-Langmuir sheath ۲ 5 smaller for measured $n_{\rm e}, T_{\rm e}$ Trends agree well, but 2.5 5.0 0.0 7.5 12.5 15.0 10.0 absolute values

D. Zuhayra

deviate

Pressure in Pa

20.0

17.5

Results 2f DC-Bias

Measurement of the sheath thickness in single and dual capacitively coupled radio frequency discharges

Results 2f boundary sheath

- Expression of sheath thickness minima decrease with rising pressure
- Asymmetry of the sheath thickness at 90°

V. Conclusion

D. Zuhayra

Measurement of the sheath thickness in single and dual capacitively coupled radio frequency discharges

Conclusion

Boundary sheath

- Decreases with rising pressure
- Is almost independent of power/RF-amplitude
- Is dependent on RF-frequency
- 2f trend resembles 1f trend
- Asymmetry at 90°
- Child-Langmuir law gives trend, but absolute values deviate

Bias

- As expected strongly dependent on the phase
 - With a symmetry at 90°

Photometric diagnostic

Photometric method suitable for estimation of certain parameters and discharge asymmetries Thank you for your attention