M. Rudolph, N. Brenning, M.A. Raadu, H. Hajihoseini, J.T. Gudmundsson, A. Anders, D. Lundin
Plasma Sources Sci. Technol., Vol. 29, 05LT01 (2020)
https://doi.org/10.1088/1361-6595/ab8175

High power impulse magnetron sputtering (HiPIMS) is an ionized physical vapor deposition technique. It typically has a lower deposition rate compared to direct current magnetron sputtering (dcMS). It is shown that by shortening the pulse length while keeping the peak discharge current constant, the deposition rate increases without compromising the ionized flux fraction.  

M. Rudolph, A. Revel, D. Lundin, H. Hajihoseini, N. Brenning, M. A. Raadu, A. Anders, T. M. Minea, J. T. Gudmundsson
Plasma Sources Sci. Technol., Vol. 30, 045011 (2021)
https://doi.org/10.1088/1361-6595/abefa8

The electron energy distribution function (EEDF) of a discharge is an important characteristic for understanding the physical and chemical processes in a plasma discharge. Here, the EEDF of a high-power impulse magnetron sputtering (HIPIMS) discharge is modelled. It is shown that this EEDF can be well approximated by a bi-maxwellian distribution.

M. Rudolph, N. Brenning, H. Hajihoseini, M. A. Raadu, T. M. Minea, A. Anders, J. T. Gudmundsson, D. Lundin
J. Phys. D: Appl. Phys. 55 (2021) 015202
https://doi.org/10.1088/1361-6463/ac2968

The magnetic field of a magnetron has a great influence on the discharge characteristics of a high-power pulse magnetron sputtering (HiPIMS) discharge. We here define a similarity parameter to group discharges with comparable discharge parameters, despite very different magnetic field configurations. It is shown that the energy efficiency of HiPIMS discharges increases with a lower value of that similarity parameter, as a higher fraction of input power is used for electron heating. At the same time Ohmic heating of electrons grows in importance over sheath heating.