Oberflächen poröser Membranfilter

Membran-basierte Filtrationssysteme haben in den letzten Jahren eine stetig wachsende Bedeutung für zahlreiche Anwendungen, z.B. in der Hämodialyse, Wasseraufbereitung, Getränkeproduktion und anderen industriellen Filtrationsverfahren erlangt. Die Vielzahl unterschiedlicher Anwendungen erfordert eine spezifische Anpassung der Polymermembranen, um Fouling („Porenverstopfen“) zu reduzieren, um eine stabile und hohe Membranleistung zu erwirken, oder um katalytisch aktive Membranoberflächen zu generieren.

Entscheidend für die Membranperformance ist die Oberflächenwechselwirkung mit dem zu filtrierenden Medium. Hier bieten wir eine Kombination aus Kompetenzen und Technologien zur Funktionalisierung und Charakterisierung poröser Polymere mit strahlenchemischen Methoden sowie die technologische Ausstattung mit Anlagen vom Labor- bis in den Pilotmaßstab.

Wir fokussieren dabei auf Anwendungen im Bereich der Wasseraufbereitung, der Entfernung von Mikroschadstoffen und der Kreislaufwirtschaft.

Forschungsthemen

Kontakt

Dr. Agnes Schulze
Leiterin

  +49 (0)341 235-2400
   agnes.schulze(at)iom-leipzig.de

Persönliches Profil

Highlights

  • Polymer Membranes for Active Degradation of Complex Fouling Mixtures

    M. Schmidt, D. Breite, I. Thomas, M. Went, A. Prager, A. Schulze
    J. Membr. Sci. 563 (2018) 481-491
    https://doi.org/10.1016/j.memsci.2018.06.013

    Immobilization of different digestive enzymes consisting of proteases, amylases and lipases on polyvinylidene fluoride resulted in biocatalytic active polymer membranes with self-cleaning capability. Activation of enzymes and therefore “switching on” the membrane system was achieved by adjusting pH and temperature leading to an active degradation of fouled substances on its surface. Fouling and self-cleaning experiments with solutions of protein, lipid, carbohydrate, and a mixture were performed and resulted in high recovery of water permeance (99%, 72%, 77%, and 68%, respectively). Furthermore, real samples including river water (75% after first cycle), and household sewage (62%) were examined, as well as first investigations in longtime performance, and stability were performed. Comprehensive membrane characterization was conducted by investigation of the immobilized enzyme concentration, enzyme activity, fouling tests and water permeation monitoring, mercury porosimetry, X-ray photoelectron spectroscopy, scanning electron microscopy, and finally, zeta potential, as well as water contact angle measurements.

  • Synthesis of High Crystalline TiO2 Nanoparticles on a Polymer Membrane to Degrade Pollutants from Water

    K. Fischer, P. Schulz, I. Atanasov, A. Abdul Latif, A. Prager, J. Griebel, A. Schulze
    Catalysts 8 (2018) 376
    https://doi.org/10.3390/catal8090376

    Titanium dioxide (TiO2) is described as an established material to remove pollutants from water. However, TiO2 is still not applied on a large scale due to issues concerning, for example, the form of use or low photocatalytic activity. We present an easily upscalable method to synthesize high active TiO2 nanoparticles on a polyethersulfone microfiltration membrane to remove pollutants in a continuous way. For this purpose, titanium(IV) isopropoxide was mixed with water and hydrochloric acid and treated up to 210 °C. After cooling, the membrane was simply dip-coated into the TiO2 nanoparticle dispersion. Standard characterization was undertaken (i.e., X-ray powder diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, water permeance, contact angle). Degradation of carbamazepine and methylene blue was executed. By increasing synthesis temperature crystallinity and photocatalytic activity elevates. Both ultrasound modification of nanoparticles and membrane pre-modification with carboxyl groups led to fine distribution of nanoparticles. The ultrasound-treated nanoparticles gave the highest photocatalytic activity in degrading carbamazepine and showed no decrease in degradation after nine times of repetition. The TiO2 nanoparticles were strongly bound to the membrane. Photocatalytic TiO2 nanoparticles with high activity were synthesized. The innovative method enables a fast and easy nanoparticle production, which could enable the use in large-scale water cleaning.

  • Reduction of Biofouling of a Microfiltration Membrane using Amide Functionalities - Hydrophilization without Changes in Morphology

    D. Breite, M. Went, A. Prager, M. Kühnert, A. Schulze
    Polymers 12 (2020) 1379
    https://doi.org/10.3390/polym12061379

    A major goal of membrane science is the improvement of the membrane performance and the reduction of fouling effects, which occur during most aqueous filtration applications. Increasing the surface hydrophilicity can improve the membrane performance (in case of aqueous media) and decelerates membrane fouling. In this study, a PES microfiltration membrane (14,600 L m-2 h-1 bar-1) was hydrophilized using a hydrophilic surface coating based on amide functionalities, converting the hydrophobic membrane surface (water contact angle, WCA: ~90° ) into an extremely hydrophilic one (WCA: ~30°). The amide layer was created by first immobilizing piperazine to the membrane surface via electron beam irradiation. Subsequently, a reaction with 1,3,5-benzenetricarbonyl trichloride (TMC) was applied to generate an amide structure. The presented approach resulted in a hydrophilic membrane surface, while maintaining permeance of the membrane without pore blocking. All membranes were investigated regarding their permeance, porosity, average pore size, morphology (SEM), chemical composition (XPS), and wettability. Soxhlet extraction was carried out to demonstrate the stability of the applied coating. The improvement of the modified membranes was demonstrated using dead-end filtration of algae solutions. After three fouling cycles, about 60% of the initial permeance remain for the modified membranes, while only ~25% remain for the reference.

  • Comparison of photocatalytic membrane reactor types for the degradation of an organic molecule by TiO2 coated PES membrane

    C. Regmi, S. Lotfi, J. C. Espindola, K. Fischer, A. Schulze, A. I. Schäfer
    Catalysts 10 (2020) 725
    https://doi.org/10.3390/catal10070725

    Photocatalytic membrane reactors with different configurations (design, flow modes and light sources) have been widely applied for pollutant removal. A thorough understanding of the contribution of reactor design to performance is required to be able to compare photocatalytic materials. Reactors with different flow designs are implemented for process efficiency comparisons. Several figures-of-merit, namely adapted space-time yield (STY) and photocatalytic space-time yield (PSTY), specific energy consumption (SEC) and degradation rate constants, were used to assess the performance of batch, flow-along and flow-through reactors. A fair comparison of reactor performance, considering throughput together with energy efficiency and photocatalytic activity, was only possible with the modified PSTY. When comparing the three reactors at the example of methylene blue (MB) degradation under LED irradiation, flow-through proved to be the most efficient design. PSTY1/PSTY2 values were approximately 10 times higher than both the batch and flow-along processes. The highest activity of such a reactor is attributed to its unique flow design which allowed the reaction to take place not only on the outer surface of the membrane but also within its pores. The enhancement of the mass transfer when flowing in a narrow space (220 nm in flow-through) contributes to an additional MB removal.

Projekte

  • Recycling von Kunststoffen und Entwicklung hybrider lebender Materialien durch Verwertung von Treibhausgasen zur Herstellung von Produkten mit hoher Wertschöpfung (REPLACER)

    Klimawandel, Plastikverschmutzung und Ernährungsunsicherheit sind existenzielle Bedrohungen und stellen Europa und die Welt vor enorme Herausforderungen. Die Suche nach nachhaltigen Lösungen ist eine Herausforderung.
    Das REPLACER-Projekt geht diese Herausforderungen an, indem es die Vorteile der lebenden und der nicht lebenden Welt kombiniert, um hybride lebende Materialien (HLMs) zu entwickeln und eine nachhaltige Produktion von Proteinen für Futtermittel zu ermöglichen.
    Zu den wichtigsten Zielsetzungen des REPLACER-Projekts gehören ein neues Konzept zur Bindung und Nutzung von Kohlenstoff, HLM-basierte Bioreaktor-Prototypen aus recycelten PET-Membranen und mikrobielle Proteine als Grundlage für Tierfutter, die aus Treibhausgasen durch die HLMs produziert werden.
    Die Kommerzialisierung des Konzepts wird dazu beitragen, a) Treibhausgase abzuscheiden und die Ziele der EU zur Verringerung der Treibhausgasemissionen zu unterstützen, b) Kunststoffe zu recyceln und den europäischen Green Deal und den Aktionsplan für die Kreislaufwirtschaft zu unterstützen, c) mikrobielle Proteine zu produzieren und die Abhängigkeit der EU von Sojaproteineinfuhren zu verringern.

    Link

Ich bin damit einverstanden, dass mir Inhalte von YouTube angezeigt werden.